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Bayesian Estimation of the Scale Parameter Under
Asymmetric Loss Functions to the Beta Inverse
Weibull Distribution
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Abstract

The inverse Weibull distribution (IW) has the ability to model
failure rates which are quite common in reliability and biological
studies. A generalization of inverse Weibull distribution referred to
as the Beta inverse Weibull distribution (BIW) which is generated
from the logit of beta random variable was introduced as a life time
distribution to give more flexible than the invers Wibull distribution.
In this paper, the Bayesian approaches used to obtain the estimators
of the scale parameter « for BIW distribution. Bayes estimators are
derived by considering non-informative and informative prior
distributions based on LINEX, general entropy and binary loss
functions.

Keywords: Beta inverse Weibull distribution, Bayesian Estimation,
scale parameter, loss function, inverted gamma distribution.
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V. Introduction

The inverse Weibull distribution has received considerable
attention in the literature. Keller and Kamath ()%AY) studied the
shapes of the density and failure(hazard) rate functions for the basic
inverse model and Keller et al. (Y%A®) used the model for the
reliability analysis of commercial vehicle engines. Erto ()3A4)
introduced further properties and identification of the maodel.
Calabria and Pulcini (Y3A3¢Y44+) dealt with parameter estimation of
the model. Jiang and Murthy (Y 494) considered Weibull and inverse
Weibull mixture models with negative weights. Also,

Drapella (Y 44Y) and Jiang et al. (Y++") introduced graphical
plotting techniques, known as the inverse Weibull probability paper
(IWPP) plot and the Weibull probability paper (WPP) plot to
determine the suitability of the Weibull and the inverse Weibull
models for fitting a given data set. They showed that if IWPP plot is
roughly a straight line, then the inverse Weibull model may be used
to fit the given data set. Similarly if WPP plot is roughly a straight
line, then the Weibull model may be used to fit the data set
concerned. Khan et al. (Y++A) have discussed the classical statistical
properties of IW distribution .Kim et al. (Y« Y) have derived the non-
informative matching and references priors for the parameters of IW
distribution.

In this paper, the focus of our attention is concentrated on the
generalization of the inverse Weibull distribution referred to as the
Beta inverse Weibull distribution which is generated from the logit of
a beta random variable. Generalized beta distributions have been
widely studied in statistics and numerous authors have developed
various classes of these distributions. One major benefit of the class

- N



o 31y kil sl o SN 3 52081 sl paShas ) SLiaTiO JolS s 350 AUane

of beta generalized distributions is its ability of fitting of skewed data
that cannot be properly fitted by existing distributions.

generalized class of probability distributions discussed by
Eugene et al. (Y++Y). Let G(y)be the cumulative distribution function

(cdf) of a random variable Y . The cdf’s for a generalized class of
distributions for the random variable Y , defined by Eugene et al.
(Y++Y) as the logit of beta random variable, is given as:

Fly)=Izplab) a=0 andb =0 0)
Where

len(ab) = —B'i:l‘f':f;b} and  Bggylab) = J"DG"‘wtﬂ‘l(i —t)b1ldt (V)
Eugene et al. (YY) introduced the Beta normal distribution
by taking G(y) to be the cdf of the normal distribution. The only

properties of the beta normal distribution known are some first
moments derived by Eugene et al. (Y++Y) and some more general
moment expressions derived by Gupta and Nadarajah (Y++¢). More
recently, Nadarajah and Kotz (Y:+¢) were able to provide closed
form expressions for the moments, the asymptotic distribution of the
extreme order statistics and the estimation procedure for the beta
Gumbel distribution. Cordeiro et al. (Y+))) proposed the Beta
generalized exponential (BGE) distribution which generalizes the
beta exponential distribution discussed by Nadarajah and Kotz
(Y++°) and the generalized exponential (also named exponentiated
exponential) distribution introduced by Gupta and Kundu (Y24%).
They provided a comprehensive mathematical treatment of BGE
distribution with the hope that this generalization might attract wider
applications in reliability and biology.
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The BIW distribution was first introduced by Khan (Y+)+) as
a new reliability model by taking G(v) to be the cdf of the inverse

Weibull distribution. The basic theoretical properties of the
distribution are discussed in the paper , including the r" moment,
r'inverse integer moment and maximum likelihood estimation, mean,
variance, coefficient of variation, coefficient of skewness and
coefficient of kurtosis for BIW distribution are presented
mathematically.

The rest of the paper is organized as follows. The BIW
distribution and its properties are given in Section Y . In section ¥
Bayes estimators of the scale parameter for BIW are derived by
considering non-informative and informative prior distributions
based on LINEX, general entropy and binary loss functions. Some
concluding remarks and some future research proposals are given in
Section¢.

Y. The Beta Inverse Weibull Distribution
Y. Probability Density Function

In this section, we present some theoretical properties for the Beta
inverse Weibull distribution including the probability density
function (pdf),cumulative distribution function (cdf), shape of the
pdf, reliability and hazard functions, moments and the moment
generating functions.

The probability density function (pdf) of the Beta inverse Weibull
distribution is given by as follows:

#“,@?\
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-7 p L T L
7o) = £y e et [1 — @] for
L,

yv=0,a>0,>0a>0andb = 0. M

The pdf of the BIW distribution in (¥) also can be found by using this

[- togs(=)] F
o

transformation ¥ = where X is a random variable that

follows a beta distribution with parameters a and b as follows:

[ log.(x)] 3

V=
X
Ba™® i) —atay)E IRONEEY: |
gi"(}?} = ﬁ(a b} ¥ LB+ & alay) 1—e (ay) ] Jfﬂ-r}r = EI_: o = ﬂ)ﬁ = ﬂ‘l

a > 0,and & = 0.

Special Cases

In equation (¥) if we take one or more parameters specific values,
this results in other distributions as follows:

If p=) , then the pdf () becomes identically to the pdf of Beta
inverse exponential distribution (BIE), i.e.,

3 ob—1

_a _1
f(}-‘}=g,1b}i,e ay [1—9 H}'] JJor v=0,a>0,a>0b=0.(%)
(a.b) ay?

If p=Y , then the pdf (¥) becomes identically to the pdf of Beta
inverse Rayleighdistribution (BIR) , i.e.,

2 -4 - b1
fly) = ,Efz b}rz:;.-5€ reyy? [1 —e ::HJ-‘J‘] Jory=0,a=0a=0,b=0 (°)
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For a=),b=Y and p=) the distribution in (¥) reduces to standard
inverse Exponential distribution (SIE), i.e.,

fO)=-2e® , fory=0,a>0. )

xye

fora=),b=",and =Y the distribution in (V) reduces to standard
inverse Rayleigh distribution (SIR), i.e.,

Fy) = 2 e @, for y =0,a = 0. ()

E:}'S'

If a =Yand b =, then (Y) reduces to the two parameter Inverse
Weibull distribution(IW), i.e.,

fly) = ﬁg—ﬁ},—i.ﬁ+1}e—(rx}'}‘sj for y=0,a > 0,5 = 0. (N

Table V. Beta inverse Weibull type distribution

Distribution BIW(z, 5, a,b)

g o a b
BIE ) o a b
BIR Y o a b
SIE \ rg \ )
SIR Y e \ )

IW(a, 5)Fa ! !

Cumulative Distribution Function
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The Cumulative Distribution Function (cdf) for the Beta inverse

Weibull distribution is given from (1) as follows:

1 Glyl
Fly) = Blab)”0

[6(w)]o1[1 — G(w)]P~1 d6(w) , and

G(y) =@ y>0,a>08 >0,

LetGlu) =t

.
Jga-.ﬁj‘ ) B . -gEl
F(y) = t~(B+Dgmalet [ _ e~(eP|" gy
, b
pla,b))

Let x = (mt)™F

1 oo _ - -
F(}‘} = mﬁ:ﬂc}_}_s =3 Ex[-l — g I]b 1dx, fOI’
y=0,a>0,f>0a>=0>b=0
If 5 =0 and & is non integer, real number , then

e 1M E W

— gyl — = L '
we can use the formula (1 — w) =0 T in()+),

AW e D (e ey
F(}} - Blab) _i':Dru:b—_;u'}_;l'! |:r1+_;l':l€ .

(%)

)

™M)

This is an alternative representation of the cdf of the Beta inverse

Weibull distribution in terms of an infinite series.

Y, Y. Reliability And Hazard Functions

The reliability function for any probability distribution is given as:

R(y) =1-F(y).

For BIW distribution the reliability function is:

)
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R(y)=1- e b}j,m ge~*[1 — e ¥]P gy, ")

If 50 and b is non integer, real number , then

) = riz) (0! ~(a+){ay) P )¢
R() = ~ Bla b}E} OT(o-1t (@D %)

The hazard rate function for any probability distribution is given as:

h(y) = L2 (19)

1-F(y)
For BIW distribution the hazard rate function is

faBy—(B+1) —aljlx}f'_'g[l—a_':'x}fl_'g]ﬂ_

h(y) = 0"

E'Eb} ra}ﬁ_sg—ﬂ:[l—ﬂ—x‘]h—‘_dx
If b= 0 and & is non integer, real number , then
fr—1
EE_S}__LSP_:IH—QEH}{'.'S 1—g— (@™
h(y) = ~.J[ : 3] = (V)
flab)-T(E)EE g @+ o

J=(h —_."l_. [a+ )

The function (Y1) is important in characterizing the phenomena of
the distribution.

Y,¥.Moments

To derive moments of BIW distribution, consider the density given in (¥).
The r'" central moment of the distribution is given by

pr=EQ™) = [,y FO)dy OA)

bh-1

_'E =
ﬁﬂ }35_13_3':3}'}_3 [1 — E_':E}-}_S] d}’;

~ pla,b) J
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Wherec = r — .

E(y")=—

T b}fmxk‘le"“ [1—e %] 14x 09

— .
Wheresc_E_i—E.

For positive integer b,

re (DI -1 [

Yy — k=1 —latilx
EGT) = ﬁ(ab} s (- ;—1}"jx e
- (=1 m—1n X
F07) = e TR () )
where w = (a + j)x , then
forc>-+andb> -,
( 1}JF(b} 1 —(at])
Yy — r{ e =y
EGT) = ( DYACEYTE S
(—1drE)
=2t ()% T ) . (M)
\FE Generating Function

We derive the moment generating function and characteristic
function for a BIW distribution as follows:

M, (t) = E(e™) = [, e® f(y)dy (YY)

j rJ}—'.EH} —alay)” 5[ — @)™ 5] d}-‘.

ﬁ(a b)
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By using (Taylor's series expansion of &* about zero)

b=1

M, (t) = o b}f E.x o _-.E+1-;-:-E—m:ay}-3 1_3_.;@-}—3] dy.

Using transformation in (4) , then

= £ - L _
M., (t}_ﬁ’(a b}z_la JE!‘ Femax[] —e )b 14y,

j=o

Letw = e~ then

R I

M,,(£) = W b}fl |:E:jii.'u1."'—‘_'|_3:| wa1[1 — w]?~ldw. )

It follows from the above that the characteristic function (CF) of the
Beta inverse Weibull distribution is given by:

() = E(e™) ()
it

__1 J"l dime-5 "B | a1 A1 4un Yo

= Stam o |& ] w2 1 — w]P 1 dw (Ye)

¥. Bayesian Estimation of The Scale parameter

In Bayesian estimation and prediction problems, the
performance of estimators depends on the form of the prior
distribution and the loss function. Choice of loss function is an
essential part, since, there is no specific analytical procedure to

#“,@?\
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identify the appropriate loss function to be used; in most of the
studies on estimation and prediction problems, authors for
convenience consider the underlying loss function to be squared error
which is symmetric in nature. However, in-discriminate use of
squared error loss function is not appropriate particularly in the cases,
where the losses are not symmetric. From this viewpoint, Varian
(Y4VYe) proposed the asymmetric LINEX loss function, and Zellner
(Y4A7) extensively discussed its properties. Despite the flexibility of
the linex loss function for the estimation of a location parameter, it
appears not to be suitable for the estimation of scale parameters and
other quantities. For these reasons Basu and Ibrahimi () 34)) defined
a modified linex loss function. Calabria and Pulcini (1% ¢) proposed
another alternative to the modified linex loss function named general
entropy loss function.

In this section we find the Bayesian estimator of scale
parameter & for BIW distribution when the other parameters £, a,b

are known using non-informative and informative prior distributions
based on LINEX, general entropy and binary loss functions.
Generally, A loss function (&, «) represents losses incurred when we

estimate the parameter « by & . The linex loss function is defined as;
W& a) =dlelf@ ] — (g —a) — 1], ("M

with two parameters d =0, ¢ = 0, where, dis the scale of the loss
function and ¢ determines its shape . The Bayes estimator under the

linex loss function (Y1) obtained by minimizing the posterior
expected loss or posterior risk (average loss)as,

@ = —=ln[E,(e™)] (YY)

#“,@?\
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General entropy loss function is defined as,
(%, o) o (E)q —gln (E) -1 (YA)

which has a minimum at & = «. This loss is a generalization of the

entropy lossfunction used by several authors taking the shape
parameter g = 1. The more general version (YA) allows different

shapes of loss function when ¢ = 0 and for & = a, i.e.a positive error

causes more serious consequences than a negative error. The Bayes
estimator of «under the general entropy loss will be,

& = [En{ao)] 5. (*9)
Binary (+ <)) loss function is defined as,

~ |1 |G —a| =& .
The Bayes estimator under the binary (+¢<)) loss function (¥+)
obtained by finding the mode of the posterior distribution of @ which
IS minimizing the posterior expected loss , i.e. we differentiate the
n(e|x) to @ and equating it with Zero to evaluating the estimator of o

as,

d m{alx)

bl )

LA Bayesian Estimation of The Scale Parameter Based

on Non-Informative Prior Distribution

In Bayesian analysis, the parameter of interest is considered to
be a random variable having some prior distribution. The selection of

- N
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prior distribution is often based on the type of prior information
available to us. When we have little or no information about the
parameter, a non-informative prior should be used. The important
feature of this prior is that it is not affected by the restriction of the
parameter space.In this section we have studied the posterior
distribution ofz using non-informative prior distribution as under

(which used in Bayesian estimation) :

(@) =~ a>0. ()

Consider a random sample of size n consisting of values
X1,%2,...,x,from the density function defined in (Y) , then the

likelihood function for « is given by:

Lia) =

" b}rﬁ ()] [lete0] (ememsed ) [ [ [1- emte?]
i=1

=1 (*7)

-1

The posterior distribution of @ given xy,x3,..,x, IS obtained as,

Lia)mia) I
*Ir'[a|x} m E (Vi)

Substituting L(a) and =nla) from Equations (YY) and (¥V),
respectively, in Equation (¥¢), we get, after simplification, the
posterior distribution as

w(alx) = Aja~MEHUTZ un [e‘m_s]u; a =0, (vo)

Whereﬂl=%,u=a+j, Z=E?:13CE_'E :
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¥,1,). Bayes Estimator Under LINEX Loss Function

The Bayes estimator of scale parameter « for BIW distribution under
LINEX loss function is obtained by using (¥°) and (YV) then,

. 1,. =] :_ K e - -
HZ—;IM‘I A }_szl}' :::' yntk J"D g Blntk-1,4 cmdﬂ]. (*1)

¥,V,Y. Bayes Estimator Under General Entropy Loss
Function

The Bayes estimator of scale parameter « for BIW distribution

under general entropy loss function is obtained by using (¥¢) and
(Y1) then,

o [Tl¥) _pepgpoe | m—w 7
ﬂf‘[r.:njyz Eeu] % ™)

where v = n+%

¥,\,¥. Bayes Estimator Under Binary (<) Loss Function
By using (Y°) in (¥)) then,
20BNyt [P (g 4 1) (8D g2 [~ =
0, (*A)

the Bayes estimator of scale parameter = for BIW distribution under

binary (<) loss function is obtained by solving (YA) with respect to
i,

- N
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v, Y. Bayesian Estimation of The Scale Parameter Based
on Informative Prior Distribution

Assume that the scale parameters « has informative prior
distribution given by the inverted-gamma density as follow:

i
o) = ;1—}5:‘?" le7e : a>0 (¥9)

Substituting L(z) and =(z) from Equations (YY) and (¥9),
respectively, in Equation (Y¢), we get, after simplification, the
posterior distribution as,

w(alx) = A:a-'iﬂﬂﬂ"*ﬂe‘”'s'ﬁ a>0, ()

rt+k

Y= [(aﬂ}{E }] d=n+-

where 4; = ﬂE_,k |} :l

¥,Y,). Bayes Estimator Under LINEX Loss Function

The Bayes estimator of scale parameter « for BIW distribution under
LINEX loss function is obtained by using (£+) in (YV) then,

.1, Ky (=)™ i—dlridy)
Q_—;Elﬂ.[ﬁzjkm =0y _A}h!’]"ld:l m! Il ‘ll.'.l i|l

(1))

r+k

Where ¥ = [(a+;}(2 L%, E}] d=n d,=fn+m)+r—1

¥,Y,Y.Bayes Estimator Under General Entropy Loss
Function

The Bayes estimator of scale parameter « for BIW distribution
under general entropy loss function is obtained by using (¢+) in (¥9)

then,
- N
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PR kiyd  (—A™Mr(d:)] @
* = | 2ikem=0 20kt (@) m: v

(£Y)
Wheredz =n + é(q +r+m)

¥,Y,¥. Bayes Estimator Under Binary Loss Function

By using (¢+) in (¥)) then,

) ) g 2 . a8 _2
G-(rBr+ ) pa-@+D) 4 5 5=2]e™ oz (nf +7 +1)g-(nB+r+2)77& Az _ 0, (£Y)
we get, after simplification

yBE BT L 4G 2 — (mB+r+ a1 =0,(¢%)

the Bayes estimator of scale parameter @« for BIW distribution under

binary (+, V) loss function is obtained by solving (¢ ¢) with respect to
i,
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