pread ] 53,0 sl el | golgun)LogS 268

Ol G dane Ggyla /o

The Kumaraswamy-Generalized
Exponentiated Pareto Distribution

Dr. Tarek M. Shams

Assistant Professor of Statistics, Department of Mathematical Statistics
Faculty of Commerce, Al-Azhar University

Abstract

Based on the Kumaraswamy distribution Jones*?, we
study the so-called Kum-generalized Exponentiated Pareto
distribution that is capable of modeling bathtub-shaped hazard
rate functions. For the first time the Kum-GEP distribution is
introduced and studied. This distribution can have a decreasing
and upside-down bathtub failure rate function depending on the
value of its parameters; it's including some special sub-model
like exponentiated Pareto Distribution and its original form.
Some structural properties of the proposed distribution are
studied including explicit expressions for the moments. We
provide the density function of the order statistics and obtain
their moments. The method of maximum likelihood is used for
estimating the model parameters and the observed information
matrix is derived. The real data is provided to illustrate the

theoretical results in the complete data.

?’4’,@?\




(285919 ol sl 5239 Faalan  peShas¥l SLaTiol) ol s 35 Ao

Key Words and Phrases: Hazard function, Kumaraswamy
distribution, Moment, Maximum likelihood estimation,
Exponentiated Pareto distribution.




pread ] 53,0 sl el | golgun)LogS 268

Ol G dane Ggyla /o

Introduction

The Pareto distribution is the most popular model for
analyzing skewed data. The Pareto distribution was first
proposed by Pareto "*'as a model for the distribution of income.
It can be used to represent various other forms of distributions
(other than income data) that arise in human life. It has played a
very important role in the investigation of city population sizes,
occurrence of natural resources, insurance-risk, and business
failures. Arnald et el Mgives an extensive historical survey of its

use in the context of income distribution.

The cumulative distribution function (cdf) of the two

parameter exponentiated Pareto distribution is:

Foso0)=[1-1+072]" , x>0 (62 >0,
(1)

a random variable X is said to follow the Pareto
distribution with four parameters, if the probability density

function (pdf) of X is as follows:

fo)=02[1- 1+ 1+ D x>0 ,0,2) >0

(2)
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where ¢ and 4 are the shape parameters.

The generalized Pareto distribution was introduced by
Pickands™® and has since been applied to a number of areas
including socio-economic phenomena, physical and biological
processes Saksena et el *® reliability studies and the analysis of
environmental extremes. Davison et el ! pointed out that the
GP distribution might form the basis of a broad modeling
approach to high-level exceedances. DuMouchel ® applied it to
estimate the stable index «to measure tail thickness, whereas
Davison ®, ! modeled contamination due to long-range
atmospheric transport of radio nuclides. Van Montfort et el %,
(%81 and van Montfort et el ** applied the GP distribution to
model the peaks over a threshold (POT) stream flows and

20211 and® applied it to develop a

rainfall series, and Smith!
POT model for flood frequencies and wave heights. Similarly,
Joe ™ employed it to estimate quintiles of the maximum of N
observations. Wang “”? applied it to develop a POT model for
flood peaks with Poisson arrival time, whereas Rosbjerg et al
71 compared the use of the 2-parameters GP and exponential
distributions as distribution models for exceedances with the

parent distribution being a generalized GP distribution. In an
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extreme value analysis of the flow of Buebage Brook, Barrett %
used the GP distribution to model the Pot flood series with
Poisson inter-arrival times. Davison et el presented a
comprehensive analysis of the extremes of data by use of the
GP distribution for modeling the sizes and occurrences of
exceedances over high thresholds, Abdul Fattah et el.introduced

the new model of generalized Pareto distribution.

In this context, we propose an extension of the
exponentiated Pareto distribution based on the family of
Kumaraswamy generalized denoted with the prefix “Kw-G” for
short distributions introduced by Cordeiro and de Castro .
Nadarajah et al. ™ studied some mathematical properties of this
family. The Kumaraswamy (Kw) distribution is not very

common among statisticians and has been little explored in the
literature. Its cdf (forO<x <1)is F(x) =1— (1 — xa}b, where
a > 0 and b > 0 are shape parameters, and the density function
has a simple formf(x) = ab x* (1 — x*)?~1, which can be
unimodal, increasing, decreasing or constant, depending on the

parameter values. It does not seem to be very familiar to

statisticians and has not been investigated systematically in
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much detail before, nor has its relative interchangeability with
the beta distribution been widely appreciated. However, in a
very recent paper, Jones ! explored the background and
genesis of this distribution and, more importantly, made clear
some similarities and differences between the beta and Kw

distributions.

In this note, we combine the works of Kumaraswamy *

and Shawky et el 1% to derive some mathematical properties of
a new model, called the Kumaraswamy Generalized
exponentiated Pareto (Kw-GEP) distribution, which stems from
the following general construction: if G denotes the baseline
cumulative function of a random variable, then a generalized

class of distributions can be defined by:
F(;a,b) =1—(1-6()%)" (3)

where a >0 andb > 0 are two additional shape parameters
which govern skewness and tail weights. Because of its
tractable distribution function (2), the Kw-G distribution can be

used quite effectively even if the data are censored.

7~ %
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Correspondingly, its density function is distributions has a very

simple form:
f(x;a,b) =ab g(x) G(x)* (1 - G(x)H)PT (4)

The density family (3) has many of the same
properties of the class of beta-G distributions see Eugene
et al ™ | but has some advantages in terms of tractability,
since it does not involve any special function such as the
beta function.

Equivalently, as occurs with the beta-G family of
distributions,  special Kw-G  distributions can  be
generated as follows: the Kw-normal distribution is
obtained by taking G(x) in (2) to be the normal
cumulative  function.  Analogously, the  Kw-Weibull
Cordeiro et al ' Kw-generalized gamma Pascoa et al ! |

231 andKw-Gumbel

Kw-Birnbaum-Saunders Saulo et al.
Cordeiro et al P! distributions are obtained by taking G(x)
to be the cdf ofthe Weibull, generalized gamma,
Birnbaum-Saunders and Gumbel distributions,

respectively, among several others. Hence, each new Kw-
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G distribution can be generated from a specified G
distribution.

This paper is outlined as follows. In section 2, we define
the KW-GEP distribution and provide expansions for its
cumulative and density functions. A range of mathematical
properties of this distribution is considered in sections 3 and4.
These include quantile function, simulation, skewness and
kurtosis. Maximum likelihood estimation is performed and the
observed information matrix is determined in section 5. In
section 6, we provide simulation study for the generated data.

Finally, some conclusions are addressed.

2- The Kumaraswamy-Generalized Pareto Distribution

If G(x;8) is the exponentiated Pareto cumulative
distribution with parameter ¢ = (6,4) then equation (1)

yields the Kw-GEP cumulative distribution for (x= 0)

_119a)?
Flog)=1-{1-[1-@+0]"} (5)
where & = (a,b,6,1), a,b,8,4 > 0 are non-negative shape
Parameter. The corresponding pdf and hazard rate function are:

f (x; {) =abfA[1-(1+ x)_A]Ba—l(l +x) @) {1 -0+ x)_ilga}b—l
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(6)
and
S (x; _) —1-F (x;_) — {1 —[1-@a+ x}‘ﬂ]ea}b
(g
"9 )

abb A[1 -1+ 07 @0 @1 - @+
B {1-[1—(1+x) 4%}

respectively
2.1- Special Distributions
The following well-known and new distributions are

special sub-models of the Kum-GP distribution.
If b = 1 in (6) we get the Kum-GEP distribution reduces to

a—-1

flug)=aboat- @+ 07 @+ @01 -+ 0]

which is the exponentiated exponentiated Pareto (EGP)

For a = b = 1, we obtain the exponentiated Pareto distribution,

for a = b = 8 = 1, we obtain the Pareto distribution.

7 N
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2.2- Expansions for the cumulative and density

functions

Here, we give simple expansions for the Kw-GEP
cumulative distribution. By using the generalized binomial

theorem (for 0<a<1)

ab

(1+a)'= Z (T:) at (7)

i=0

in equation (5), we can write:

F (x;i) ~1 —i(—l)i (?) [1-(1+07] " =1 —imr (x;g)
o iz

where 7, = (-1D'(?) and r(x;g denotes the EP
cumulative  distribution  with parameters{ = (6, ai,1).

Now, using the power series (7) in the last term of (6), we

obtain:

( ) _ bABa(i+1)

(i+1) Z( 1! ( )(1 £ 20) B[ (g 4 ) el

we can write

7 N
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f(6:8) =) kgts®) (®)
i=0

where:

ki =1 i 1};(_1)i (b : 1)

and

g(x;9), denotes the Exponentiated Pareto Distribution with

parameters
8 = (6,a(i + 1), ).

Thus, the Kw-GEP density function can be expressed as an
infinite linear combination of Pareto densities. Thus, some of its
mathematical properties can be obtained directly from those
properties of the Exponentiated Pareto distribution. For
example, the ordinary, inverse and factorial moments, moment
generating function (mgf) and characteristic function of the Kw-
GEP distribution follow immediately from those quantities of

the Pareto distribution.
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3- Quantile function and simulation

We present a method for simulating from the Kw-GEP
distribution (6). The quantile function corresponding to
(5) is:

-1

1\

Q) = Frw =11 (1- 1 -w»)"} —1 9)

Simulating the Kw-GEP random variable is straight

forward. Let U be a uniform variate on the unit
interval (0,1). Thus, by means of the inverse
transformation method, we consider the random variable
X given by:

-1

-

X = 1—(1—(1—1&}%)5 ﬂ 1

which KW, i.e. X~ KW — GEP (a,b,0,1)
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4- Skewness and Kurtosis

The short comings of the classical kurtosis measure are
well-known. There are many heavy tailed distributions for
which this measure is infinite. So, it becomes uninformative
precisely when it needs to be. Indeed, our motivation to use
quantile-based measures stemmed from the non-existence of
classical kurtosis for many of the Kw distributions.

The Bowley’s skewness (see Kenney and Keeping [15])

is based on quartiles:

_ Q3/, — qufz +Qu,

Sk —
Q3/4 Q1/4

and the Moors’ kurtosis (see Moors (28)) is based on cortiles:

_ Q7= Qs = Qs+ Quyp

K,
Qe/y = Qz/

where Q(+) represents the quantile function

?‘(’,@?\
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5- Estimation and information matrix

In this section, we discuss maximum likelihood
estimation and inference for the Kw-GEP distribution.

Let X1, X5, ..., X,, be a random sample from

X~KW — GEP @) where ¢ = (a,b,8,1) be the vector

of the model parameters, the log-likelihood function for ¢

reduces to:

f(ﬁ) =nloga +nlogb +nlogf +nlogi
—(+1) Z log(1 + x;) + (6 — 1)2 log(1 — (1 + )%
i=1 i=1

- 340
+(b -1 Y logf{1-[1-@+x)2 "} (10)

The score

vector U @ = (0¢/0a, 0¢/db, 0¢/00, 0¢/9A)T, where

the components corresponding to the parameters in & are given

by differentiating (10). By settingz; = 1 — (1 + x;) ™%

z;9%1og z;
had —+9210gz —9(5—1)2 P

7 N
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n
df n
-5 Z log(1 — z,%%)
=1
6f_n+ il b 1)2 z;9%)og z;
8 8 a. 0gz; —a ), 1= 6a
i=1 i=1
And

n n . —a .
Z log(1+ x) — (6 1}2 (1+x;)"*log(1+x;)
i=1

Z.
i=1 t

Ba —A
—Qa(b—l)z (1+x;) *log(1 + x;)

1— Ziga

The maximum likelihood estimates (MLESs) of the parameters

are the solutions of the nonlinear equations V£ = 0, which are

solved iteratively. The observed information matrix given

jaa jab jaB jaﬂ

__[Jea Jop Jbe Jpa
]ﬂ’@) n Joa Jov Jea Jea
Jaa Jan Jae Jaa

whose elements are,

Bzgalo z;
Jea ———9@—1}2 G oy
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_ S z2%log z;
Jab = — 1_28a

i=1
Ba Ba
log z; a@logz ;" +1
]anﬂ:zlogz _(b_l}z ( Gan? )
— z;%)
= Z(l-l—x)’llog(l-l-x)

9“ Y1+ %) Mog(1 +x; )[1 +aflogz; —29“]
—6(b-1) Z S

n
; n ] sz“ log z;
e = _a_ -_—

L=

Ior = Bai 2297 (1 + x) Hog(1 + x;)
bA = T

- 1 —Z'j'_'ﬁlcL
i=1

az?®log? z;
= a0y

. (1+x,)*og(1+ xi) 28711+ x,)*log(1+ x.)[1 + 6a — 259]
Joa = ‘IZ Z a(b - )Z (1 - 7,092

7 N
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6 -Application

Here, we use a real data set to compare the fits of the Kum-
GEP distribution and those of other sub-models, i.e., the
Exponentiated Pareto (EP) and Pareto distributions. We make a
results comparison of the models fit. We consider an
uncensored data set corresponding an uncensored data set from
Nichols and Padgett (2006) consisting of 100 observations on
breaking stress of carbon fibers (in Gba): 3.7, 2.74, 2.73, 2.5,
3.6, 3.11, 3.27, 2.87, 1.47, 3.11,4.42, 2.41, 3.19, 3.22, 1.69,
3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96,
2.53,2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33, 2.55, 3.31, 3.31,
2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59,2.38, 2.81, 2.77, 2.17,
2.83,1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84,
1.59, 3.19,1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 2.17,
1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69,1.25, 4.38, 1.84, 0.39,
3.68,2.48,0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61,
2.12,1.89, 2.88, 2.82, 2.05, 3.65 .These data are used here only
for illustrative purposes. The required numerical evaluations are
carried out using the Package of Mathcad software.

Table 1 provide the MLEs (with corresponding standard
errors in parentheses) of the model parameters. The model
selection is carried out using the AIC (Akaike information
criterion), the BIC (Bayesian information criterion) and the
CAIC (consistent Akaike information criteria):

AIC = —2£(6) + 2q,
BIC = —2£(0) + qlog(n), CAIC = —2£(0) +

7~ %
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where £(68) denotes the log-likelihood function evaluated at the

maximum likelihood estimates, q is the number of parameters,

and n is the sample size.

Tablel. MLEs of the model parameters, the corresponding SEs
(given in parentheses) and the statistics AIC, BIC and CAIC

Estimates Statistic
Model
a b (7] A AlIC BIC CAIC
Kw — GE] | | 4368 | 4134 | 3142 | 257.762 | 257.762 | 257.665
EP 1519 6.041 | 4361 | 245137 | 245137 | 256.04
P 7423 | 3.985 | 276.106 | 267.106 | 258.009

Since the values of the AIC, BIC and CAIC are smaller for the
Kum-GP distribution compared with those values of the other
models, the new distribution seems to be a very competitive
model to these data.

7~ %
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7- Concluding Remarks

The well-known two-parameter exponentiated Pareto
distribution, introduced by Shawky, Hanaa, Abu-Zinadah, (2009), is
extended by introducing two extra shape parameters, thus defining
the KW-G exponentiated Pareto (KW-GEP) distribution having a
broader class of hazard rate and density functions. This is achieved
by taking (1) as the base line cumulative distribution of the
generalized class of KW-G distributions defined by Cordeiro and de
Castro (2010). A detailed study on the mathematical properties of the
new distribution is presented. The new model includes as special
sub-models the Pareto, exponentiated Pareto (EP) (Gupta et al.,
1998) and Pareto distributions. We obtain the quantile function,
skewness and kurtosis. The estimation of the model parameters
is approached by maximum likelihood and the observed
information matrix is obtained. An application to a real data set
indicates that the fit of the new model is superior to the fits of
its principal sub-models. We hope that the proposed model may

be interesting for a wider range of statistical research.

7~ %
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