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A New Estimation Technique of Stress- Strength
Reliability Parameter for Exponentiated-Rayleigh
Distribution

Dr. Tarek M. Shams, Dr. Hamdy M. Salem
Department of Mathematical Statistic, Faculty of Commerce,
Al-Azhar University

Abstract

This paper deals with the estimation of the stress-strength
parameter R = PA" < X)when X and ¥ are independent random
variables with different shape parameters. The maximum
likelihood estimator of the unknown parameters can be obtained
in explicit form. We obtain the asymptotic distribution of the

maximum likelihood estimator of R . Transformation
Techniques will be used to drive distribution of.We provide
illustration with an application to a real data set.

Keywords: Exponentiated-Rayleigh Distribution; Maximum
Likelihood Estimator; fisher information matrix; Asymptotic-
distribution.




paad | (63 239 LadhuadI 353 - agan pllae 53adE] Basans Liysla
Mmelbumt_sm/mggmuu@'um@uo/a

1. Introduction

The Rayleigh distribution is widely used to model events
that occur in different fields such as medicine, social and natural
sciences. For instance, it is used in the study of various types of
radiation, such as sound and light measurements. It is also used
as a model for wind speed and is often applied to wind-driven
electrical generation. In recent years, several standard life time
distributions have been generalized via exponentiation.
Examples of such exponentiated distributions are the
exponentiated Weibull family, the exponentiated exponential,
and the exponentiated (generalized) Rayleigh and the
exponentiated Pareto family of distributions.

Among the authors who have considered the
exponentiated distributions are Mudholkar and Hutson [4],
Gupta and Kundu [13], Surles and Padgett [7] and Kundu and
Gupta [2, 3].A common feature in families of exponentiated
distributions is that the distribution function may be written as

Fo) =[G where G(.) is the distribution function of a

corresponding non-generalized Distribution and & =0 denotes
the generalization parameter. The generalized Rayleigh
distributionis obtained by generalization of the Rayleigh
distribution. It is also called the two parameter (scale and shape)
Burr type E distribution. The generalized Rayleigh density can
be used to study skewed data set. The one parameter (scale
parameter equals one) generalized Rayleigh distribution is
studied by Sartawi and Abu-Salih [5], Jaheen [16, 17], Ahmad
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et al. [8], Ragab[10], and Surlesand Padgett [6]. Recently Surles
and Pudgett [14] observed that the two parameters generalized
Rayleigh distribution can be used quite effectively in modeling
strength and life time data. Kundu and Ragab [1] used different
methods to estimate the unknown parameters of the generalized
Rayleigh. Ragab and Kundu [9] discuss several interesting
properties of the Generalized Rayleigh distribution, Recently,
Surles and Padgett (14) (see also Surles and Padgett, 15)
introduced two parameter Burr Type X distribution and
correctly named as the generalized Rayleigh distribution. Note
that the two-parameter generalized Rayleigh distribution is a
particular member of the exponentiated Weibull distribution,
originally proposed by Mudholkar and Srivastava (11), see also
Mudholkar et al. (12).

The exponentiated-Rayleigh  Distribution has the
following probability density function (pdf):

z lg—:l.

fe)= 2;3 E_e}’ [1 - e_e} ]

- x>0  0>0
6=0 (1)
From now on if a random variable E has the pdf (1), then it
will be denoted by Exponentiated-Rayleigh distribution, the

corresponding cumulative distribution function (cdf) and
hazard rate function (hrf) are:

F{ﬂ:[l_ﬂ_ef]IEI "X>=0 0>=0

g=0 (2)
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and
H F 281
2;; E_[EJ [1 _ E‘_é} ]
H(x) = — (3)
1- [1 - e_g} ]
The main aim of this paper is to develop the
inferential procedure of the stress-strength

parameter B =P® < X) when X and Y are independent
ER(f1) and ER('?:}, respectively, and drive the distribution

of R via transformation method. Note that the stress-
strength parameter plays an important role in the reliability

Analysis. For example if X is the strength of a system which

is subjected to stressY , thenthe parameter R measures the
system performance and it is very common in the context of

Mechanical reliability of a system. Moreover, R provides
the probability of a system failure, if the system fails
whenever the applied stress is greater than its strength.

In this paper, the main aim is to consider maximum
likelihood estimator by using extensive of applications to a
real data set, the rest of the paper is organized as follows. In
Section 2, we provide the maximum likelihood estimator of

R "MLE of R". In Section 3 we discuss transformation
techniques and drive the marginal distribution. Applications
to a real data set to illustrate the results and data analysis
are presented in Section 4, respectively. Finally, we conclude
the paper in Section 5.
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2. Maximum likelihood estimators

In this section, we consider the maximum likelihood

estimators (MLEs) of R. Suppose that £ and ¥ are two
independent RVs with respective parameters &, andf:

having PDFs fx©) and fy ()- Then
R =PY<X) = f £, B0 dx

1'91-51

=23 -:r [l—e'ﬁ]

The log-likelihood function for MLE of R and its asymptotic
distribution reduces to

Zﬂ'mn i i
) () Y Yy = w6,

Lx:0,.6,,0) = (

mn .z B-1om .2 8,1
[L-e@] J[[L-9]
i=1 j=1
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And i -

nv_ﬂ_=_ﬂ_= _ n[_e(?;z] T

Iny, 2, g) ; J] + (8, 1];1 1 + (6, 1)2{ .....
(5)

The score vector, where the components corresponding to the
parameters are given by differentiating (5).

al"L Zlu[l—e v ]

(6)
aluL m 1u[1 8 TE]
e o
And
Xi 2
dlnL —@+m X2 V2 n—)eu
= +Zl(%) +Zl(;] Hﬂl_ﬂZﬁ
= 1= =L 11 —e o

(8)
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The maximum likelihood estimates (MLES) of the parameters
are the solutions of the nonlinear equations, which are solved

iteratively.

e

We can obtain 8. , @:and 3% from the explicit forms as the

following:
ey T
6'1 - 1 -1
—Eﬂ lu[l - e ?. ] (9)
a m
02 = 8,1
.
Em lnl E_(EJ ] (10)
put 8(6%) ==" in equation (8) we obtain the following:
.E_ 2
( G o
g(e?) =m+m) Z [?)
Xty ln 1—e cr, z—1 1—e E, i=1

—:I.

n _1_1"(%)2 ?{ - |
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Hence, obtained the estimate value of 6* and replaced in (9),

and (10), we can compute the estimate value off, and 6 and
then the MLEs of R will be as the following:

Ro 01
B, +6;
n
pP__W
R=5"m
AR (11)
n o2 011 m o 2 Ep—-1
w=— lu[l—e_(%}] v:-Zln[l_e_(Ej]
where = and -1

The last equation can be used to construct transformation
techniques as in the next section

The maximum likelihood estimates (MLES) of the parameters

are the solutions of the nonlinear equationsVf = ©  which are

solved iteratively. The observed information matrix is

0,0, Jo,0, Jo,02
Jn(01.62.06%)=n|Jo s Jo,6, Jo,0

]I:I'ZBI IBEBZ lazgz
whose elements are:

n
6,

fﬁ,ei =- Ja,gz =20
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3- Transformation Techniques

Given two independent coordinates W and ¥ from normal

distributions with zero mean and the same variance @*the

nd -7 m

. W = V= . _ .
distance Z.T and z is distributed according to

the exponentiated-Rayleigh distribution. W and ¥V may be
regarded as the velocity components of a particle moving in a

plane.

To realize this we first write,

W =

n -1 m
Vv =—
z

ZT and

The Jacobian of the transformation is obtained as follows:

ow aw - -n(l—r)
j=|or 0z | _|z.r® 3T ]_n.m
~|9v dv| . -m | z3 gz
dr 0z z3

I”ml_
Tz zEre

The joint probability density function (pdf) of W and V

written as the following:

r«q@yw
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frz@.2) = fupw. 0)[]|

= fw). f(w). ]I
i 0<r<l,0«<z<w (12)
where
O n(l -yt -6.ndn pd-7)
fw)= ( ]) e Zr . =0
" z.r zZ.T ,
a;" anym-1 0, Tt
f{mzlfml(g) e 'z ; (E]::{] ,
e,m g,.nd -1
B~ @ ==
z and ZT

The marginal probability density function of 7 can be written

as.

R(I) = szﬁlz{r,Z] dz

g m P (n+1m)
h() = Bt m (Ei'l_:,l) Rl ¢ EED Lot i —T(l — "55'2'1_???)[ 0<r=1

which seems like beta Distribution with the following property

f«@@,&w
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[m + k). + m)

L TTL
E(r®) = .2F, (m+k,n+m,n+m+k,1— - )
") [m+n+kIm —* 6,n
Var@) mon + 1 F( + 2 +2,1 E=m)
ar@) = 2F [m MA+m,n+m ,1-
m+m)r+m+1) * 6,n
m g,my g, m\['
[{n+m]'(91n) .zFl(m+ l,n+m,n+m+ 1’1_91?1)]
where

=, @);-(b). 7J [(a+))
2F,(a,b,c,T)= I (@) = -
(e =) = 10)
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4 — Application

Here, we will use a real data set to get the results of the ER
distribution, consider an uncensored data set corresponding an
uncensored data set from Nichols and Padgett (2006) consisting
of 100 observations on breaking stress of carbon fibers (in
Gba):

3.7,2.74,2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11,4.42, 2.41,
3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95,
2.97, 3.39, 2.96, 2.53,2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33,
2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59,2.38,
2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76,
491, 3.68, 1.84, 1.59, 3.19,1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22,
1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69,1.25,
4.38,1.84,0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57,
1.08, 2.03, 1.61, 2.12,1.89, 2.88, 2.82, 2.05, 3.65 .

These data are used here only for illustrative purposes. The
required numerical evaluations are carried out using the

Package of Mathcad software.

Tables @) provide the MLEs (with corresponding standard
errors in parentheses) of the model parameters. The model
selection is carried out using the AIC (Akaike information

ﬂ‘,@?\
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criterion), the BIC (Bayesian information criterion) and the
CAIC (consistent Akaike information criteria):

AIC=-2£@)+ 2q
Zgn

BIC = —2£(0) + qlog(n). CAIC = -2/ + 1
n—q—

where *'(9) denotes the log-likelihood function evaluated at the
maximum likelihood estimates, E is the number of parameters,
and E is the sample size.

Table(1). MLEs of the model parameters and the statistics AIC,
BIC and CAIC with True Value (5.2, 4.87 and 1.39) for (¢4 ,8
and 072) respectively

Estimates Statistic

Model

g, g gz A=c Bzc CAic

EX -R 52 | 4.87 | 1.459 |536.052 |536.052 | 536.302

Rayleigh | - [ 2.352 [378.655 | 378.655 | 378.905

Since the values of the AIC, BIC and CAIC are greater for the
EX-R distribution compared with those values of the other
model, the EX-R distribution seems to be a very competitive
model to these data.

7 N
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5- Concluding Remarks

The well-known three-parameter exponentiated Rayleigh
distribution is extended by introducing extra shape parameter.
This is achieved by taking (2) as the baseline cumulative
distribution of the generalized class of exponentiated Rayleigh
distribution. This model includes as special sub-models
Generalized Rayleigh distribution. The estimation of the model
parameters is approached by maximum likelihood and the
observed information matrix is obtained. An application to a
real data set indicates that the fit of the new model is superior to
the fits of its principal sub-models. We hope that the proposed
model may be interesting for a wider range of statistical
research.
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