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Abstract:

This study presents the Kumaraswamy Marshal-Olkin Flexible
Weibull Extension (KMO-FWE) distribution, a newly developed
probability model designed to extend existing lifetime distributions.
This extension enhances the ability to model various hazard rate
patterns with greater flexibility. The study explores the fundamental
properties of this distribution, including the cumulative distribution
function (CDF), probability density function (PDF), survival function,
hazard function, moments, moment generating function, quantile
function, and order statistics .To estimate the distribution’s
parameters, several statistical methods are assessed, with a primary
focus on Maximum Likelihood Estimation (MLE). Additionally,
alternative estimation techniques such as Maximum Product Spacing
(MPS), Least Squares (LS), Weighted Least Squares (WLS), and
Percentile Estimation (PE) are considered. A Monte Carlo simulation
study is conducted to evaluate the accuracy and efficiency of these
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estimation approaches under both complete data and Type-II
censoring conditions .The results indicate that MLE is highly effective
for large sample sizes but may introduce bias in smaller samples. In
contrast, MPS provides stable parameter estimates under more
complex conditions. While LS and WLS are computationally
straightforward, their performance diminishes in the presence of
censoring. Meanwhile, PE proves beneficial in reliability analysis
based on percentile estimation .Overall, the findings highlight the
KMO-FWE distribution as a versatile and reliable model, suitable for
applications in reliability engineering, survival analysis, and
biomedical research.
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1. Introduction

Analyzing lifetime data and system reliability is essential across
various fields, including engineering, medical research, and risk
assessment. To model failure times effectively, numerous statistical
distributions have been introduced. Among these, the Kumaraswamy
Marshal-Olkin Flexible Weibull Extension (KMO-FWE) distribution
has gained recognition for its adaptability in representing different
failure rate patterns, such as increasing, decreasing, and bathtub-
shaped hazard functions. This flexibility makes it particularly valuable
for modeling censored survival data, where complete observations may
not always be available due to time constraints .Accurate parameter
estimation is a critical aspect of statistical modeling, as it significantly
influences the reliability and applicability of a distribution in practical
settings. Various estimation approaches have been developed for
lifetime distributions, each offering distinct advantages and challenges.
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This study focuses on Maximum Likelihood Estimation (MLE),
Maximum Product Spacing (MPS), Least Squares (LS), Weighted
Least Squares (WLS), and Percentile Estimation (PE) to estimate the
parameters of the KMO-FWE distribution under Type I censoring, a
widely used framework in survival and reliability studies. weibull
distribution is one of the most widely used models in reliability
analysis(Nelson, 2005). but various extensions have been introduced to
enhance its flexibility. The Flexible Weibull Extension (FWE)
distribution, proposed by(Mudholkar, Hutson, & Methods, 1996),
allows for more complex hazard rate structures. The Kumaraswamy
distribution, introduced by (Kumaraswamy, 1980), provides a flexible
alternative to the beta distribution for modeling bounded data.
Furthermore, the Marshal-Olkin transformation, proposed by(Marshall
& Olkin, 1997) ), has been used to add shape parameters to
distributions, thereby increasing their adaptability. The Marshall-Olkin
Extended Exponential (MOEE) distribution, like the KMO-FWE
distribution, introduces an additional shape parameter to improve
flexibility, making it more suitable for real-world reliability
applications. Studies such as (Ahmad, Almetwally, & Research, 2020)
have explored various estimation techniques for MOEE and related
distributions, showing that different methods perform variably
depending on sample size and censoring level In parameter estimation,
MLE remains the most commonly used approach due to its asymptotic
efficiency, but it may suffer from convergence issues for complex
models.(Fisher, 1922). MPS, introduced by(Cheng & Amin, 1983) ,
has been proposed as a more stable alternative in certain cases. LS and
WLS methods, originally developed for regression analysis, have been
adapted for lifetime distributions (Kuhl, Wilson, & Simulation, 2000)
). PE, based on quantile properties, has also been explored as a robust
and computationally simple method(Arnold, Balakrishnan, &
Nagaraja, 2008) ).Despite extensive research on flexible lifetime
distributions and their estimation techniques, there has been limited
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investigation into the KMO-FWE distribution with Type I censored
samples. This study aims to address this gap by applying multiple
estimation methods, evaluating their performance using simulation
studies, and validating the results with real-world data. The
Kumaraswamy-G family was introduced by (Cordeiro, De Castro, &
simulation, 2009) , where its mathematical properties were studied, and
special sub-models were presented. The cumulative distribution
function (CDF) and probability density function (PDF) are given as
follows:

F(x;a,b)=1-[1-x%° a<x<l a,b,>0
f(x;a,b)=abx*! (1-x*)"! o<x<lI a, b
>0
The Kumaraswamy Marshal-Olkin family of distributions
introduced by(Alizadeh et al., 2015a) The cumulative
distribution function (CDF) and probability density function (PDF) are

given by

. o ewa YT
F(x;a,b,p)=1 {1 (1_1_)(_}(& )J} (1)

f(x,a,b,p)=

ab(-pe(x)GE)™ [ (6o Y]
(-pG (x¢))" {1 [l-f’ 4>” (2)

where a , b are shape parameter

Flexible weibull extension distribution introduced by
(Bebbington, Lai, Zitikis, & Safety, 2007). Its mathematical
properties were explored, and specific sub-models were
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introduced. The cumulative distribution function (CDF) and
probability density function (PDF) are provided as follows:

G(x;a,p) =1-exp {-e“-f } x>0 (3)
ﬂ ax—ﬁ ax—ﬁ
g(X;OL,B)Z(a+—2j e exp{-e X } x>0
X
4)

2. Kumaraswamy Marshal — Olkin Flexible Weibull
Extension Distribution

In this section, we introduce the Kumaraswamy Marshal—
Olkin Flexible Weibull (KMO-FWE) distribution, a newly
developed model that extends the Weibull and Flexible
Weibull distributions by incorporating the Kumaraswamy
and Marshal-Olkin transformations. This new distribution
offers enhanced flexibility in modeling lifetime data and
reliability analysis by capturing various hazard rate shapes.
The cumulative distribution function (CDF) of the KMO-
FWE distribution is given from equation (1,3) by :

- —a) b
ax-£
1 - exp (-e X]
F(x; ®)=1-11-

- ax. P
l-pexp|-e *

a,b,p,a, >0

x>0

where a,b,p,«, 8 and p are the distribution parameters.
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Graph (V): Cdf of KMOFWE distribution at different values of p
and its parameters

The probability density function (PDF) is given from
equation (2,4) by:

B - P - B
f(x;d))zab(l—p)(a+gje x exp(—e XJ

a-1 -(a+1)
ax—ﬁ — ax—ﬁ
{1 -exp | -¢e ")} [l-p{l-exp {-e X]D
o 2) Y
I -expl-e *
o -’
l-Pexp|-e *

where a,b,p,a, >0

x>0
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Graph (Y): Pdf of KMOFWE distribution at different values of p
and its parameters

This formulation allows the KMO-FWE distribution to
provide a better fit for real-world data compared to
traditional lifetime distributions.

The survival function S (x; @) represents the probability
that a system or component remains operational beyond a
given time x . It is defined as the complement of the
cumulative distribution function (CDF):

S; ®)=1-F (x; )
For the Kumaraswamy Marshal-Olkin Flexible Weibull
Weibull Extension (KMO-FWE) distribution, the survival
function is given by(Alizadeh et al., 2015b).
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I-exp|-e *
S(x; @) = <1 - 7

1-P exp(—ea J

This function plays a crucial role in reliability analysis and

survival studies, providing a measure of how long a subject
or system 1is expected to function. The KMO-FWE
distribution, with its enhanced flexibility, is particularly
useful for modeling complex survival behaviors
encountered in real-world applications.(Bebbington et al.,
2007)

The hazard function h(x;¢) also known as the failure rate

function, describes the instantaneous failure rate of a system
at a given time X, given that it has survived up to that time It
is expressed as the quotient of the probability density
function (PDF) and the survival function (SF).

_fxe)
1-F(x;0)

B ot o AT
h(x;o) :ab(l-p)(a+—2)e x exp(-e Xj l-exp(-e XJ
X

h(x;)

where a,b, p,a, >0
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Graph (3): Hazard function of KMOFWE distribution at different
values of p and its parameters

This function plays a crucial role in reliability analysis and
survival studies, providing a measure of how long a subject
or system 1is expected to function. The KMO-FWE
distribution, with its enhanced flexibility, is particularly
useful for modeling complex survival behaviors
encountered in real-world applications.

3. Expansion for the cumulative and density functions:
To facilitate the mathematical analysis and estimation of the
Kumaraswamy Marshal-Olkin Flexible Weibull Extension
(KMO-FWE) distribution, the cumulative distribution
function (CDF) and probability density function (PDF) can
be expanded into series representations. These expansions




allow for better approximations and derivation of statistical
properties.

5
B l- exp{-eax_kJ
Fx;o)=1-] (-l)i(b]

f(x;®) = ab(l-P) (a + 32) i i i i i piu eax.g {eXp[-e“x'E]]Wu

b-1) (t+ay+1) (-ay+1
y 1 u

(=}
~<
Il
=}
I
>
=
i}
(=1

W; = ab (1 _p) i i i i i pitu (_l)j+t+u+i+u (a }lj

t+ay+1) (-ay+1
1 u

These expansions provide a convenient way to approximate
the distribution for numerical computations and further
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theoretical analysis, making them useful in reliability
engineering and survival analysis applications (Alizadeh et

al., 2015b).

4. Properties of Kumaraswamy Marshal - Olkin
Flexible Weibull Extension Distribution:
4.1. Moments:

Moments are essential statistical metrics that provide
insights into the shape and characteristics of a probability
distribution. For the Kumaraswamy Marshal-Olkin Flexible
Weibull Extension (KMO-FWE) distribution, the rth
moment is given by:
w = '[0 x" g(x;CD)dX

Using the series expansion of the cumulative and density
functions, the moments can be expressed as:

ZWIOX gX(D)dx

where g(x; @) is the probability density function (PDF) of
the KMO-FWE distribution.

j+i+u
\ o B (xx+% axfg
(TR (P Lx a+; e exp | -¢ dx

, {exp = H R T S

v=0 V!

(I + V)é -( l+v)ﬁ

= o, J:oxr (a + ,Bx'z)e e *odx

- where
7~ S




© _1 r . . v
Or = hj,t,y,i,u (a b p) z ( ) (Jv‘i"l-l- u)
V=0 !

o 5 (" @+v) (8)" ()"

m!

e

m=0

,U;:CUV pt+u i (‘l)m (I-I-V)”’ (ﬁ)m (u)i"’ J:C o (a_l_ﬂx_z)e(lw)ax dx

m=0 m'
' +u S _1’” 1+Vm " u”” ® r-m - +V )ax
e $ LT IO [ o o
, a I'ir-m+1 p Tlr-m-1
H. =0 (Xi,a,b,p,ﬁ)|: a r-m+1 ((V + l)rm)ﬂ ar-m-l EV + l)rrgl :|

where

U(Xiaaab,p,ﬁ): @y p'™ i (' l)m (1+V)m (ﬂ)m (u)_'"

m=0 m'

These moments provide essential insights into the central
tendency, dispersion, and shape of the KMO-FWE
distribution, making them useful in statistical modeling and
reliability analysis (Alizadeh et al., 2015b).

4.2. Moment Generating Function:
The moment generating function (MGF) is a crucial tool in probability
theory, as it provides a way to obtain all moments of a distribution.
For the Kumaraswamy Marshal-Olkin Flexible Weibull Extension
(KMO-FWE) distribution, the Moment Generating Function is defined

7 N




Maximum Likelihood Estimation Of The kumaraswamy Marshal-Olkin Flexible
Weibull Extension Distribution under Type-Ill Censored Samples
Dr. Nader Metawally, Dr.Ahmed Abou Almaaty, Dr.Abd El-Hamid Eisa

M (t)= J.: exp (tx ) f(x; @) dx

- Expanding the exponential in taylor series here:-

al(r-m+1) BT (r-m+1)
ar—m+l (V+1)r-m+1 ar-m+l (V+ 1)r-m+1

My(t) = » (Xi,a,b,p,ﬂ)

u < -1)" (1 g™ ¢t -m
}/(Xha,b,p,ﬂ): Nj, t,y,i,u p” Z ( ) (+V) B (u)

meo vim e ! (-1 (j+i+u)”

0 tr
M, ()= —'Ml
r=0 r.

This expansion allows for the derivation of key statistical
properties, such as the mean, variance, and higher-order
moments, which are useful in reliability analysis and
survival studies(Alizadeh et al., 2015b).

4.3. Quantile function and simulation:
The quantile function is an essential tool in probability and
statistics, as it provides a way to generate random samples from
a given distribution. For the Kumaraswamy Marshal-Olkin
Flexible Weibull Extension (KMO-FWE) distribution, the
quantile function is defined as the inverse of the cumulative
distribution function (CDF):
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Q(u)=F"' (u)
L N(u) + N(u) +4ap
! 2

1-p {1-{1-(11)%}%}
1))

Solving for x in terms of u, the quantile function can be
approximated as:

N(u) = log | log

This simulation technique is widely used in Monte Carlo
methods and statistical inference, enabling researchers to
evaluate the behavior of the KMO-FWE distribution under
various parameter settings(Alizadeh et al., 2015b).
4.4. Skewness and kurtosis:

Skewness and kurtosis are key statistical measures that describe the
shape of a probability distribution. Skewness indicates the extent to
which a distribution deviates from symmetry, while kurtosis reflects
the presence of heavy or light tails compared to a normal distribution.
These measures help in understanding data distribution patterns and
are widely used in statistical analysis. The skewness S, of the

Kumaraswamy Marshal-Olkin Flexible Weibull Extension (KMO-
FWE) distribution is defined as:
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. _oby)-20(5)+ ofty)
1‘ a?)-olly)

The kurtosis k, is a measure of whether the distribution has

heavy or light tails relative to a normal distribution. It is
given by:

_allg)-als)- al3g) +ali)
“ Q(0g)-Ql%)
A normal distribution has a kurtosis of 3. If k, >3 , the
distribution has heavier tails (leptokurtic), and if k, <3, it

has lighter tails (platykurtic),(Alizadeh et al., 2015b).

These measures provide valuable insights into the shape of
the KMO-FWE distribution, making them useful in real-
world applications such as reliability analysis and risk
assessment.

4.5. Order statistics:
Order statistics play a crucial role in statistical inference, particularly
in reliability analysis and survival studies. For a random sample of
size n drawn from the Kumaraswamy Marshal-Olkin Flexible Weibull
Extension (KMO-FWE) distribution, the order statistics are defined as
the sorted values of the sample.

The probability density function (PDF) of the rth order statistic Xr:n is
given by:
1

o o) )

f(x; @) [F(x, @) [1-F(x; @)]""
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where:
f(x;®) is the PDF of the KMO-FWE distribution,
F(x;®) is the CDF of the KMO-FWE distribution,
n is the sample size,
r is the order of the statistic.

The flexibility of the KMO-FWE distribution makes it a strong
candidate for applications requiring order statistics in real-world
datasets(Alizadeh et al., 2015b).

5. Sumulation Study:

In this section, a Monte Carlo simulation is conducted to
compare estimation methods using both complete data
(Part I) and the Type-II censoring scheme (Part II).
Monte Carlo simulation is a widely used technique in
statistical analysis to evaluate the efficiency of different
estimation methods under various conditions (Robert,
Casella, & Casella, 1999). The estimation methods
considered include Maximum Likelithood Estimation
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(MLE)(Fisher, 1922), Maximum Product Spacing
(MPS)(Cheng & Amin, 1983), Least Squares Estimation
(LS)(Ishii, Dohi, Okamura, & Management, 2012),
Weighted Least Squares Estimation (WLS)(Seber, Wild,
& Sons, 2003), and Percentile Estimation (PE)(Arold et
al., 2008) The primary objective is to assess the accuracy
and efficiency of these methods under different sample
sizes and censoring levels. Estimating the parameters of
a probability distribution is crucial for its practical
application in statistical modeling. In this section, we
discuss The Maximum Likelihood Estimation (MLE)
method estimates parameters by maximizing the
likelihood function for the Kumaraswamy Marshal—
Olkin Flexible Weibull Extension (KMO-FWE)
distribution.

L(®) = klog a+klog b+klog (1-p) + i {log [a_k%ﬂ

i=1 1

Y logot)] + Yheo) + @)Y kefi-of)

- (a+1)i10g I-p[l-o(t,)] + (b-l)i log {1-{ l-o(t,) T}

i=1 i=1

mebﬁm{%iﬁﬁﬁ}
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da [1 -pw (ti)]2
on(T) _ [L-pa(@][Ta(T) o(T)]-[1 - o(T)] [(p)(T) & (T)o (T)]
Joa [1-po(T)f
8_L _ i 1/t12 + i l _i 1 l)(t )_ (a-l)i l a)(tl)u(
0 I q +ﬁ ot 1 i 1 [1
:
-1 Gn( )
n(t,) aﬂt

n (T)" on(T)
k EY;
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Ta i~ rol T




5n (1) l-po (T)]{1 o(T)v (T)} + -0 (T)]{(p)t w(T)v (T)}
o’ - o)

The Maximum Likelihood Estimation (MLE) method remains one of
the most widely used approaches for parameter estimation due to its
desirable statistical properties, such as asymptotic efficiency and
consistency. However, for complex distributions like the KMO-FWE
distribution, solving the likelihood equations analytically is often
challenging. As a result, numerical optimization techniques . While
MLE generally provides accurate estimates, it may suffer from
convergence issues or bias in small samples, necessitating the use of
alternative estimation techniques or improved initialization strategies
for better performance.

5.1.Estimation under complete sample:
For the complete sample case, the simulation follows these steps:

A total of 1,000 replications are performed for each
scenario(Mooney, 1997),Number of replications = 1000.
Sample sizes are: n=40,60,100.(Mudholkar, Srivastava, &
Kollia, 1996)

The Average (AVG) and Root Mean Square Error
(RMSE)(Hyndman & Koehler, 2006) are computed for each
estimation method to evaluate their performance.
Methods of estimation are: MLE, MPS, LSE, WLSE , PE
Parameters of the Kumaraswamy Marshal-Olkin Flexible
Weibull Extension distribution are:
a=0.75,b=1.5,a=0.5,=0.5

a=0.75,b=1.5,a=1.5,=1.5

a=1.50,b=2.5,a=2.5,=2.5

Computed measure: Average (Avg.) and root mean square

error (RMSE)
ﬂ’,@;&
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Part I: Complete Case

Table (1.a): Average and RMSE for different estimation methods
of KMOFWE distribution at different sample sizes and a =
0.75,b=1.5,a=0.5,=0.5

Method of Estimation
n Parm MLE MPS LSE WLSE PE
AVG | RMSE | AVG | RMSE AVG RMSE | AVG | RMSE | AVG | RMSE
p=0.3
a 1.6628 | 1.7522 | 2.3409 | 2.3017 | 0.8843 0.7532 | 0.8052 | 0.5782 | 0.9281 | 0.5573
40 b 2.0517 | 1.3657 | 2.4971 | 1.9460 1.8478 1.2035 | 1.8520 | 0.9210 | 1.6639 | 0.6096
a 0.7297 | 0.6622 | 0.9332 | 1.0226 | 0.6003 1.2776 | 0.3481 | 0.7353 | 0.4996 | 0.6301
B 0.4822 | 0.3191 | 0.4409 | 0.4469 | 0.6228 | 0.3640 | 0.6372 | 0.4008 | 0.5331 | 0.4237
a 1.4914 | 1.5833 | 2.2139 | 2.2631 0.6978 | 0.4006 | 0.7454 | 0.3840 | 0.9156 | 0.5701
60 b 1.9374 | 1.1693 | 2.3976 | 1.7435 1.8031 0.8164 | 1.6790 | 0.5420 | 1.6262 | 0.5401
a 0.6560 | 0.5113 | 0.7578 | 0.6598 | 0.3966 | 0.7866 | 0.3876 | 0.5072 | 0.4779 | 0.4678
B 0.4760 | 0.2556 | 0.4124 | 0.3211 0.6346 | 0.2742 | 0.5961 | 0.2499 | 0.5312 | 0.3473
a 1.1211 | 1.0561 | 1.6780 | 1.7201 0.7413 0.3161 | 0.7794 | 0.4030 | 0.9469 | 0.5514
100 b 1.7161 | 0.6981 | 1.9925 | 1.0823 1.6040 | 0.5152 | 1.6304 | 0.4016 | 1.5991 | 0.4149
a 0.5899 | 0.3087 | 0.6738 | 0.3956 | 0.5186 | 0.7256 | 0.4318 | 0.3974 | 0.4612 | 0.3122
B 0.5152 | 0.2371 | 0.4357 | 0.2470 | 0.5667 | 0.2045 | 0.5619 | 0.2036 | 0.4993 | 0.2450
p=0.7
a 1.2843 | 1.3282 | 2.2343 | 2.1507 | 0.8238 | 0.5642 | 0.8816 | 0.6768 | 0.8610 | 0.4369
- b 22072 | 2.0169 | 3.5735 | 3.5803 1.7202 1.1678 | 1.6387 | 0.8273 | 1.6240 | 0.7063
a 0.6195 | 0.3698 | 0.6016 | 0.4069 | 0.6026 | 0.8067 | 0.5779 | 0.5039 | 0.5318 | 0.4302
B 0.5972 | 0.4535 | 0.4203 | 0.3904 | 0.6909 | 0.5517 | 0.6093 | 0.4197 | 0.5436 | 0.3884
a 1.0589 | 1.0237 | 1.8123 | 1.8113 | 0.9947 | 0.7449 | 0.8263 | 0.4550 | 0.8468 | 0.3867
60 b 1.9222 | 1.4090 | 2.9154 | 2.7637 1.8369 1.1311 | 1.6681 | 0.5565 | 1.5970 | 0.5834
a 0.5542 | 0.2515 | 0.5527 | 0.2851 0.4742 | 0.4065 | 0.4519 | 0.2581 | 0.4738 | 0.2610




B 0.5928 | 0.3624 | 0.4953 | 0.4190 | 0.5098 0.2385 | 0.5513 | 0.2233 | 0.5571 | 0.4138

1.0207 | 0.8359 | 1.5800 | 1.5108 | 0.8351 0.4175 | 0.8267 | 0.4639 | 0.8866 | 0.4303

100 1.8134 | 1.0311 | 2.4530 | 2.0283 1.6849 | 0.5107 | 1.7209 | 0.7801 | 1.6227 | 0.5331
a 0.5160 | 0.1710 | 0.5149 | 0.1822 | 0.4639 | 0.3592 | 0.4344 | 0.2480 | 0.4722 | 0.1781

B 0.5465 | 0.3054 | 0.4610 | 0.3229 | 0.5380 0.2311 | 0.5518 | 0.2302 | 0.5081 | 0.3355

Table (1.b): Average and RMSE for different estimation methods
of KMOFWE distribution at different sample sizes and a =
0.75,b=1.5,a=1.5,=1.5

Method of Estimation
n | Parm MLE MPS LSE WLSE PE
AVG | RMSE | AVG | RMSE | AVG | RMSE | AVG | RMSE | AVG | RMSE
p=0.3
a 1.3273 | 1.3436 | 1.8926 | 1.8462 | 1.0097 | 1.0208 | 1.1245 | 1.2974 | 0.9455 | 0.7997
40 b 1.7329 | 2.0185 | 1.6805 | 1.8862 | 2.1132 | 2.1348 | 2.3694 | 3.0395 | 2.2849 | 1.9368
@ 2.0026 | 1.0901 | 2.3068 | 1.5246 | 1.7584 | 1.2858 | 1.7888 | 1.2585 | 1.3166 | 0.9683
B 1.4930 | 0.8348 | 1.3984 | 1.3001 | 1.7401 | 0.8461 | 1.7493 | 0.8899 | 1.6710 | 0.7313
a 1.2116 | 1.1293 | 1.8379 | 1.8461 | 0.9599 | 1.0593 | 0.9535 | 1.0594 | 0.9097 | 0.8570
60 b 1.5839 | 1.2040 | 1.6019 | 1.5788 | 2.1064 | 2.0780 | 2.2537 | 2.2313 | 2.1169 | 1.7382
a 1.8902 | 1.0273 | 2.0667 | 1.1318 | 1.7869 | 1.2444 | 1.6620 | 1.3303 | 1.4670 | 0.9740
B 1.4767 | 0.7584 | 1.2453 | 0.9188 | 1.7793 | 0.7920 | 1.8177 | 0.8753 | 1.7610 | 0.8666
a 1.1091 | 1.0298 | 1.5836 | 1.5449 | 0.8430 | 0.8062 | 0.7311 | 0.5211 | 0.8417 | 0.5457
100 b 1.6809 | 1.1364 | 1.6209 | 1.3104 | 2.0687 | 2.1838 | 1.9186 | 1.2193 | 2.3208 | 1.7089
@ 1.6676 | 0.6763 | 1.8061 | 0.7744 | 1.6905 | 0.9439 | 1.5371 | 0.7294 | 1.2411 | 0.8379
B 1.4842 | 0.6134 | 1.2854 | 0.7770 | 1.7932 | 0.7256 | 1.8197 | 0.6000 | 1.7785 | 0.7683
p=0.7
40 a 1.0154 | 0.9301 | 1.6485 | 1.5739 | 0.7616 | 0.5713 | 0.7898 | 0.7284 | 0.8056 | 0.6759
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b | 17507

2.3778

2.3548

3.5927

2.0314

2.8573

2.2214

3.0691

2.3508 | 2.7849

a 1.8954

0.9168

1.9215

1.0671

1.7367

1.0355

1.7320

0.9789

1.6498 | 1.0208

B | 1589

0.8874

1.3447

1.2023

1.7550

0.8992

1.8213

0.9532

1.8264 | 0.9382

a 0.8996

0.7211

1.4853

1.3720

0.7961

0.6016

0.7410

0.5319

0.7765 | 0.5377

60

b 114932

1.1237

1.9132

2.2440

2.1537

2.2259

1.8930

2.2630

2.2375 | 2.3353

a 1.8437

0.7434

1.7896

0.7948

1.7601

1.0923

1.7307

0.7963

1.5276 | 0.7026

B | 1.6869

0.9523

1.3468

1.0289

1.7524

0.8401

1.7676

0.6937

1.7862 | 0.7768

a 0.9545

0.7915

1.2779

1.1215

0.8510

0.5800

0.7832

0.5148

0.7983 | 0.4296

100

b 117603

1.8098

1.8525

2.1072

2.1024

2.0306

1.8867

1.7624

1.8147 | 1.2180

a 1.6587

0.5157

1.7072

0.6450

1.6351

0.7949

1.6556

0.6878

1.5420 | 0.5462

B 1.5778

0.6459

1.4140

0.8598

1.6498

0.6046

1.6982

0.5659

1.6065 | 0.4642

Table (1.c): Average and RMSE for different estimation methods
of KMOFWE distribution at different sample sizes and a =
1.25,b=2.5,a=2.5,=2.5

Parm

Method of Estimation

MLE

MPS

LSE

WLSE

PE

AVG

RMSE

AVG

RMSE

AVG

RMSE

AVG

RMSE

AVG

RMSE

p=0.3

40

Q

2.2750

2.2726

2.5251

2.6409

1.7823

1.5134

1.7174

1.4475

1.6056

1.3003

(s

2.8713

3.8895

3.0588

4.7204

3.2598

3.1005

3.4117

3.0498

2.9295

1.9874

3.5866

2.0634

4.2415

3.1366

3.4392

2.6557

3.1032

1.9375

2.9570

1.7791

2.8580

2.0016

3.2456

2.9864

3.0528

1.8760

2.9725

1.6226

2.8567

1.4432

60

2.0734

2.0649

2.5089

2.4629

1.5475

1.1340

1.9877

1.6008

1.4801

1.0312

SR | ™| R

2.9605

3.7945

3.0777

4.7530

3.3545

2.5345

3.5377

2.4666

3.3343

2.4641

S}

3.3499

1.6652

3.6841

1.9021

2.8858

1.5451

2.7066

1.6390

2.5681

1.1404

2.7709

1.8255

2.7939

2.1077

2.8768

1.3654

2.5951

1.3255

2.7303

1.1079




a 1.7923 | 1.5449 | 2.3172 | 2.2175 | 1.6436 | 1.2158 | 1.5221 | 1.0754 | 1.5953 | 1.2075

100 b 2.5782 | 3.0868 | 2.7314 | 3.8104 | 3.0898 | 2.2731 | 3.0477 | 2.2371 | 3.1034 | 1.8341

@ 3.2043 | 1.3420 | 3.4555 | 1.6117 | 2.8471 | 1.2975 | 2.8736 | 1.3024 | 2.6308 | 1.0971

B 2.6183 | 1.2100 | 2.6398 | 1.7574 | 2.7188 | 1.1389 | 2.8178 | 1.2117 | 2.6626 | 1.0959

p=0.7

a 2.2878 | 2.6178 | 2.4490 | 2.6256 | 1.7839 | 1.6158 | 1.9282 | 1.6767 | 1.7075 | 1.4868
40 b 4.0523 | 5.8917 | 3.2968 | 3.9385 | 3.6201 | 3.7476 | 3.5348 | 3.1221 | 3.3584 | 2.8110
a 3.1854 | 1.7883 | 3.7501 | 2.6063 | 3.1202 | 1.8589 | 2.8010 | 1.5692 | 2.8106 | 1.6433
B 2.7804 | 1.8409 | 3.1601 | 2.9120 | 2.8878 | 1.6110 | 2.6723 | 1.5414 | 2.7132 | 1.5031
a 1.7100 | 2.0717 | 2.0772 | 2.2747 | 1.2906 | 1.0714 | 1.4825 | 1.2340 | 1.4553 | 1.1743
60 b 3.1666 | 4.0894 | 3.5126 | 4.5888 | 2.9822 | 2.5750 | 3.2419 | 2.6364 | 3.1273 | 2.5681
a 3.4110 | 1.8356 | 3.6404 | 2.0742 | 3.3182 | 1.9380 | 3.2054 | 1.8176 | 2.9492 | 1.5891
B 3.0583 | 1.8386 | 3.2977 | 2.6265 | 3.2506 | 1.6919 | 3.0567 | 1.5733 | 2.9118 | 1.5093
a 1.7820 | 1.6185 | 2.0478 | 2.0459 | 1.4565 | 1.1043 | 1.8346 | 1.3803 | 1.3600 | 0.9690
100 b 3.7334 | 4.2969 | 3.0242 | 3.4654 | 3.1787 | 2.5719 | 3.9675 | 3.4342 | 3.0967 | 2.1185
a 2.8736 | 1.2459 | 3.2587 | 1.5450 | 2.9560 | 1.5129 | 2.5364 | 1.1960 | 2.8045 | 1.1681

B 2.7179 | 1.5578 | 2.8138 | 1.9085 | 2.8713 | 1.3691 | 2.4797 | 1.1613 | 2.8445 | 1.2210

The simulation results provide insights into the effectiveness
of each estimation method under different data conditions.
MLE is known for its asymptotic efficiency, but it may suffer
from bias or convergence issues in small samples(Lehmann &
Casella, 2006). MPS serves as a stable alternative, particularly
when MLE struggles with boundary estimates(Cheng & Amin,
1983).

5.2. Estimation under Type-II censoring:
Type-II censoring is a widely used censoring scheme in

survival analysis and reliability studies, where a fixed number
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rrr of failures is observed out of a total sample size n, and the
remaining observations are censored. This approach is
particularly relevant in life-testing experiments where the
study continues until a predetermined number of failures
occur, making it an effective method for analyzing lifetime
data (Lawless, 2011),In this study, we evaluate the
performance of different parameter estimation methods for the
Kumaraswamy Marshal-Olkin Flexible Weibull Extension
(KMO-FWE) distribution under Type-II censoring. The
estimation process involves:
- Generating random samples of size n=60,100,150 from the
KMO-FWE distribution.
- Applying Type-II censoring, where the number of
observed failures is determined by r=f*n
where:
=40% ,60% ,80% and n=60,100,150 represents different
censoring levels(Nelson, 2005).
- Number of replications = 1000
- Assessing the accuracy of the estimators using statistical
metrics such as Average Estimates (AVG) and Root Mean

Square Error (RMSE).

rq@;»\,



Part II: Censoring case (Type-II)

Table (2.a): Average and RMSE for different estimation methods
of KMOFWE distribution under Type-II censoring at different
sample sizes and a = 0.75,b=1.5,a = 0.5, =0.5

Parm

Number of failure (1)

r =40%n

r =60%n

r =80%n

AVG

RMSE | AVG

RMSE

AVG | RMSE

0.3

60

2.0970

2.7674 | 1.1966

1.6701

1.3198 | 1.5099

3.6868

5.2849 | 2.6080

3.6955

2.0924 | 1.9835

3.3650

4.0548 | 3.2822

3.8612

1.7220 | 1.9970

0.6975

0.6117 | 0.7799

0.6367

0.5928 | 0.4404

100

1.5243

2.0368 | 1.1731

1.5301

1.1285 | 1.2221

3.0893

4.2551 | 2.4724

3.2635

1.8928 | 1.3520

3.0983

3.8054 | 3.0607

3.5992

1.6081 | 1.7081

0.6626

0.5295 | 0.6600

0.4634

0.5648 | 0.3338

150

1.3318

1.5420 | 0.9773

1.1032

1.0536 | 1.0586

2.3882

3.0303 | 1.9732

1.8207

1.7755 | 0.9228

3.5137

4.1552 | 2.7446

3.1855

1.3556 | 1.3361

0.6152

0.4560 | 0.6078

0.3616

0.5523 | 0.2890

0.7

60

1.4275

1.7664 | 1.1988

1.5167

1.0653 | 1.1723

4.6910

6.7090 | 3.1224

4.3952

2.0395 | 2.0636

3.4637

4.1648 | 2.0067

2.4441

1.0568 | 1.1270

0.7947

0.8149 | 0.7542

0.6926

0.6198 | 0.4008

100

1.0487

1.3138 | 1.0439

1.1963

0.9469 | 0.8551

S| D RNT|Q | RD|RNT Q[ DR T || ™| R| T

39115

6.0451 | 2.4467

3.3928

1.8237 | 1.2830
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a | 3.2544 | 3.9204 | 1.7686 | 1.9574 | 0.7827 | 0.6605
B |0.7925 | 0.6734 | 0.6641 | 0.5080 | 0.5916 | 0.3194
a 10.8390 | 0.7831 | 1.0149 | 1.1306 | 0.8980 | 0.7651
150 b |3.0245 | 4.7243 | 2.1047 | 2.1138 | 1.6945 | 0.9637
@ | 3.0811 | 3.7874 | 1.3712 | 1.4299 | 0.6864 | 0.5121
B |0.6945 | 0.4834 | 0.6096 | 0.3502 | 0.5892 | 0.3116
Table (2.b): Average and RMSE for different estimation methods

of KMOFWE distribution under Type-II censoring at different
sample sizesand a = 0.75,b=1.5,a =1.5,=1.5

Number of failure (7)

p n | Parm r =40%n r =60%n r =80%n
AVG | RMSE | AVG | RMSE | AVG | RMSE
a 1.7833 | 2.4672 | 1.4178 | 2.1336 | 1.2675 | 1.6967
60 b 3.1249 | 4.0662 | 2.3140 | 3.9464 | 1.8769 | 2.2956
a 5.3476 | 7.2572 | 3.9882 | 4.1129 | 2.7089 | 2.1585
B 2.2358 | 1.8835 | 2.0456 | 1.5962 | 1.7342 | 1.1182
a 1.6244 | 2.1407 | 1.2226 | 1.7903 | 0.9152 | 1.0779
0.3 100 b 3.2231 | 4.5231 | 2.0722 | 2.8469 | 1.7336 | 1.9379
a 49689 | 6.2473 | 3.3986 | 3.1276 | 2.3632 | 1.5530
B 1.9539 | 1.5521 | 1.9078 | 1.2955 | 1.7325 | 0.8615
a 1.2828 | 1.5559 | 1.0165 | 1.1810 | 0.9228 | 0.9720
150 b 3.1329 | 4.2398 | 2.0428 | 2.6668 | 1.7845 | 1.9837
4.1502 | 4.5018 | 2.8663 | 2.5602 | 2.2220 | 1.4136
B 1.7937 | 1.1966 | 1.7377 | 1.0147 | 1.6674 | 0.8257
0.7 60 a 1.3998 | 1.6736 | 1.3577 | 1.6773 | 1.0446 | 1.1739

7 N




b 3.8907 | 6.1524 |3.0456 | 4.9402 |2.0421 | 3.1732
a 3.9389 | 4.8012 |2.6419 | 2.3854 |2.1473 | 1.2986
B 1.9334 | 1.8279 | 1.8138 | 1.6108 | 1.5749 | 0.8490
a 1.3294 | 1.4260 |1.2149 | 1.3003 | 1.0574 | 1.1251
100 b 3.5667 | 5.6596 |2.6610 | 3.8234 |2.2013 | 3.2445
a 3.1411 | 3.1618 |2.0944 | 1.5644 | 1.8768 | 1.0186
B 1.6785 | 1.4173 | 1.5294 | 0.9822 | 1.5928 | 0.8330
a 1.0691 | 1.0260 | 1.0228 | 1.0784 | 0.9460 | 0.8775
150 b 3.1372 | 49911 |2.5033 | 3.7790 | 1.9452 | 2.1386
a 2.8544 | 29286 |2.0722 | 1.5359 |1.7162 | 0.8060
B 1.7262 | 1.2458 | 1.6349 | 0.9754 | 1.5627 | 0.6632

Table (2.c): Average and RMSE for different estimation methods
of KMOFWE distribution under Type-II censoring at different
sample sizesand a = 1.25,b=2.5,a = 2.5, =2.5

Number of failure (1)

| P = 20%n r = 60%n r = 80%n
™ [TAVG | RMSE | AVG | RMSE | AVG | RMSE
a | 3.0298 | 3.0658 | 2.8688 | 2.8977 | 2.6192 | 2.8861

60 b | 5.7440 | 8.8032 | 3.9260 | 5.3737 | 4.3352 | 5.7855
a | 47555 | 5.4834 | 43793 | 4.1064 | 3.8737 | 2.9169
B | 2.9496 | 2.4887 | 3.0724 | 2.5647 | 3.2088 | 2.5307
a | 2.7491 | 2.9453 | 2.4337 | 2.6459 | 2.4122 | 2.4865

100 | b | 48074 | 7.2266 | 4.4686 | 5.7477 | 4.2782 | 5.0116
a | 42681 | 4.3342 | 4.2199 | 3.8200 | 3.2726 | 2.1350
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B 29098 | 2.2775 | 3.1558 | 2.4189 | 2.9270 | 2.1517

2.4805 | 2.3688 | 2.7060 | 2.5242 | 2.0161 | 1.7953

150 b 4.0384 | 5.2519 | 4.6380 | 5.3862 | 3.5902 | 4.4869

a 42051 | 4.4485 | 3.0886 | 2.3665 | 3.1625 | 1.7844

B 2.8396 | 2.2106 | 2.5085 | 1.8474 | 2.7454 | 1.7186

a 27715 | 2.8376 | 2.5695 | 2.5302 | 2.3295 | 2.3558

60 b | 58670 | 7.6114 | 4.6003 | 5.4123 | 4.6315 | 5.9333

a 43745 | 49211 | 3.9721 | 4.1991 | 3.4604 | 2.7828

B | 3.0907 | 2.9021 | 3.1837 | 3.1431 | 2.9803 | 2.4290

a 2.5049 | 2.6092 | 2.4059 | 2.1960 | 1.8416 | 1.8064

07 | 100 b 5.0410 | 6.6706 | 5.6819 | 6.7502 | 3.6828 | 4.1748

a | 4.1824 | 4.1548 | 2.7742 | 2.0793 | 3.2854 | 1.9324

B 2.9490 | 2.4106 | 2.5739 | 1.8375 | 2.9649 | 1.8663

a 2.2071 | 2.0761 | 2.3968 | 2.1208 | 2.0397 | 1.8220

150 b | 49198 | 59043 | 5.0827 | 6.0198 | 4.3903 | 4.9905

a | 3.6100 | 3.2426 | 2.8243 | 2.1741 | 2.7664 | 1.5036

B 2.7859 | 1.9515 | 2.5428 | 1.9432 | 2.6221 | 1.5638
Comments:

1.

From the results obtained in Tables 1.a, 1.b, and l.c for the

complete sampling, we can observe the following:
a) As the sample size (n) increases, the RMSE decreases, and
the AVG value approaches the true initial value for all

KMOFW distribution parameters, namely: a, b, @, and .

b) As the value of p increases, we observe a decrease in RMSE.
c) As the values of parameters a and b increase, the RMSE
increases.
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d) Comparing the estimation methods, we find that the PE
method has the lowest RMSE.

2. From the results obtained in Tables 2.a, 2.b, and 2.c for the Type-
I censoring case, in addition to the previous observations, we note
that as the failure proportion (f) increases, the RMSE decreases,
while all other variables remain constant.

Conclusion:

In this study, the Kumaraswamy Marshal-Olkin Flexible Weibull
Extension (KMO-FWE) distribution was introduced and analyzed as a
flexible model capable of capturing various hazard rate behaviors.
Several key statistical properties were derived, including the
cumulative distribution function (CDF), probability density function
(PDF), survival function, hazard function, moments, moment
generating function, quantile function, and order statistics.
Furthermore, multiple parameter estimation methods were explored,
with a particular focus on Maximum Likelihood Estimation (MLE).To
evaluate the performance of these estimation methods, a Monte Carlo
simulation study was conducted using both complete data and Type-II
censored data. The simulation results provided valuable insights into
the efficiency and accuracy of different estimation techniques:

MLE demonstrated strong performance in large samples but showed
potential bias and convergence issues in small samples.

Maximum Product Spacing (MPS) provided stable estimates,
especially when MLE struggled with boundary values.

Least Squares (LS) and Weighted Least Squares (WLS) were
computationally simpler but less robust under censoring.
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Percentile Estimation (PE) proved useful for scenarios where
percentile-based estimates are preferable, particularly in reliability
analysis.

The results indicate that the KMO-FWE distribution is a powerful and
flexible model for analyzing lifetime data, survival studies, and
reliability engineering applications. The choice of an appropriate
estimation method depends on factors such as sample size, censoring
level, and computational feasibility.

For future research, further extensions of the KMO-FWE distribution
could be explored, including Bayesian estimation methods, regression
modeling, and applications to real-world datasets in engineering and
biomedical sciences.

1l padlall

~JUle ol gyl sS O edl s md s sle] Ayl ods pis
SalS B o 15 o5 Sl 3505 a5 « (KMO-FWE), .S
alzzes LT ddas e 8,0l slaza ¥l e a4l el ola ) 53
i) dwl I asliasdl dul ) Cassians . ST & 5 a0 blieadl Y drad
Jlz Y1 LS dlsy « (CDF) a1 A1 w5 sl dlls S5 (8 Loy ¢ 52
a5l Ay Dy cpszalls bl Dlsy didiall dlsy «(PDF)
ool B e ccu‘j:.!\ Sladss  paad LAl Slsla>Y1
SV OSGY1 s e el S me islam Y1 LY
by Joe dht pum olos @ Rl o o> ) BLoYL.(MLE)
il s ra)l wlu iy ¢ (LS) al)l ol iy «(MPS)
SIS o 88es a3 12 o3 (PE). & seall dl) 55 ((WLS)
S5 5 Al UL e S JB (3 oda i) Ll 3 LiS 5 385 o

7 N



Sleall § LW s MLE s OF J) sbedl 225 W1 g gl n 246 )
MPS i 5 ¢ Jlaadl 3 . 2oVl Slaall 3 5o odoe 15 S0 5 63 0S|
LS O o & Jain 8T Gy b b 3 ledaal) 5t ol puis
3l G RE N s 3wl Legilsl O Y] coluad! LW WLS
g gredl Ll s e (S A8 8 pedl s (3 a6 PE ot cans
Sl sxis 25 505 KMO-FWE 55 stedl 56 pls IS
edall Jdoss dd psell duda @ Olihdl) by (S5 s

A gl L)l & oI

7 N



Maximum Likelihood Estimation Of The kumaraswamy Marshal-Olkin Flexible
Weibull Extension Distribution under Type-Ill Censored Samples
Dr. Nader Metawally, Dr.Ahmed Abou Almaaty, Dr.Abd El-Hamid Eisa

Reference

1- Ahmad, H. H., Almetwally, E. J. P. J. o. S., & Research,
O. (2020). Marshall-Olkin  generalized  Pareto
distribution: Bayesian and non Bayesian estimation. 21-
33.

2- Alizadeh, M., Tahir, M., Cordeiro, G. M., Mansoor, M.,
Zubair, M., & Hamedani, G. J. J. o. t. E. M. S. (2015a).
The  Kumaraswamy  marshal-Olkin  family  of
distributions. 23(3), 546-557.

3- Alizadeh, M., Tahir, M., Cordeiro, G. M., Mansoor, M.,
Zubair, M., & Hamedani, G. J. J. o. t. E. M. S. (2015b).
The  Kumaraswamy  marshal-Olkin  family  of
distributions. Journal of the Egyptian Mathematical
Society, 23(3), 546-557.

4- Arnold, B. C., Balakrishnan, N., & Nagaraja, H. N.
(2008). A4 first course in order statistics: SIAM.

5- Bebbington, M., Lai, C.-D., Zitikis, R. J. R. E., & Safety,
S. (2007). A flexible Weibull extension. 92(6), 719-726.
6- Cheng, R., & Amin, N. J. J. o. t. R. S. S. S. B. (1983).
Estimating parameters 1in continuous univariate

distributions with a shifted origin. 45(3), 394-403.

7- Cordeiro, G. M., De Castro, M. J. J. o. s. c., & simulation.
(2009). A new family of generalized distributions.
Jggnggé of Statistical Computation and Simulation, 81(7),
883-898.

8- Fisher, R. A. J. P. t. 0. t. R. S. 0. L. S. A., containing
papers of a mathematical or physical character. (1922).
On the mathematical foundations of theoretical statistics.
222(594-604), 309-368.

9-Hyndman, R. J., & Koehler, A. B. J. L. j. o. f. (2006).
Another look at measures of forecast accuracy. 22(4),
679-688.

10- Ishii, T., Dohi, T., Okamura, H. J. Q. T., &
Management, Q. (2012). Software reliability prediction
based on least squares estimation. 9(3), 243-264.

11- Kuhl, M. E., Wilson, J. R. J. J. 0. S. C., & Simulation.
(2000). Least squares estimation of nonhomogeneous
Poisson processes. 67(1), 699-712.

7 N




12- Kumaraswamy, P. J. J. o. h. (1980). A generalized
probability density function for double-bounded random
processes. Journal of Hydrology, 46(1-2), 79-88.

13- Lawless, J. F. (2011). Statistical models and methods
for lifetime data: John Wiley & Sons.

14- Lehmann, E. L., & Casella, G. (2006). Theory of point
estimation: Springer Science & Business Media.

15- Marshall, A. W., & Olkin, 1. J. B. (1997). A new
method for adding a parameter to a family of distributions
with application to the exponential and Weibull families.
84(3), 641-652.

16- Mooney, C. Z. (1997). Monte carlo simulation: Sage.

17- Mudholkar, G. S., Hutson, A. D. J. C. 1. S.--T., &
Methods. (1996). The exponentiated Weibull family:
some properties and a flood data application. 25(12),
3059-3083.

18- Mudholkar, G. S., Srivastava, D. K., & Kollia, G. D. J.
J.o. t. A. S, A. (1996). A generalization of the Weibull
distribution with application to the analysis of survival
data. 91(436), 1575-1583.

19- Nelson, W. B. (2005). Applied life data analysis: John
Wiley & Sons.

20- Robert, C. P., Casella, G., & Casella, G. (1999). Monte
Carlo statistical methods (Vol. 2): Springer.

21- Seber, G. A., Wild, C.J.J.N. J. J. W., & Sons. (2003).
Nonlinear regression. hoboken. 62(63), 1238.

[

7 N



